An article Copper-catalyzed Mizoroki-Heck coupling reaction using an efficient and magnetically reusable Fe3O4@SiO2@PrNCu catalyst WOS:000477575000030 published article about TRANSITION-METAL NANOPARTICLES; ONE-POT SYNTHESIS; C-C; PALLADIUM CATALYSTS; FEPT NANOPARTICLES; SUZUKI-MIYAURA; ARYL BROMIDES; ULLMANN; SONOGASHIRA; ACTIVATION in [Yavari, Issa; Mobaraki, Akbar] Tarbiat Modares Univ, Dept Chem, POB 14115-175, Tehran, Iran; [Hosseinzadeh, Zhila] KN Toosi Univ Technol, Dept Chem, Tehran, Iran; [Sakhaee, Nader] Harris Stowe State Univ, Dept Chem, St Louis, MO USA in 2019, Cited 61. COA of Formula: C12H8Br2. The Name is 4,4′-Dibromobiphenyl. Through research, I have a further understanding and discovery of 92-86-4
This study intends to design and prepare a new magnetic copper catalyst and its activity was assessed by carbon-carbon coupling reactions. For this purpose, 1-[3-(trimethoxysilyl) propyl] urea (TMSPU), hydrazine and CuI were used sequentially to modify Fe3O4@SiO2 core-shell magnetic nanoparticles to obtain an efficient magnetic transition metal catalyst. Various analytical techniques were used to characterize the catalyst to show that the achieved structure and its properties are well-suited for coupling reactions. Finally, Mizoroki-Heck and Ullmann coupling reactions were performed using Fe3O4@SiO2@PrNCu catalyst. The new catalyst offer simple synthetic procedure, convenient use for routine casework and low price. The Fe3O4@SiO2@PrNCu catalyst was easily separated by means of a permanent and ordinary magnet and the recovered catalyst was reused in six cycles without any significant loss of activity. (c) 2019 Elsevier B.V. All rights reserved.
Bye, fridends, I hope you can learn more about C12H8Br2, If you have any questions, you can browse other blog as well. See you lster.. COA of Formula: C12H8Br2
Reference:
Benzoxazole – Wikipedia,
,Benzoxazole | C7H5NO – PubChem