An article A Modular Synthetic Strategy for Functional Macrocycles WOS:000526818900037 published article about EFFICIENT COMPLEXATION; WATER; BINDING; RECOGNITION; CHEMISTRY; ARENES in [Xu, Kaidi; Zhang, Zhi-Yuan; Yu, Chengmao; Wang, Bin; Dong, Ming; Li, Chunju] Tianjin Normal Univ, Key Lab Inorgan Organ Hybrid Funct Mat Chem, Tianjin Key Lab Struct & Performance Funct Mol, Minist Educ,Coll Chem, Tianjin 300387, Peoples R China; [Xu, Kaidi; Yu, Chengmao; Zeng, Xianqiang; Gou, Rui; Cui, Lei; Li, Chunju] Shanghai Univ, Ctr Supramol Chem & Catalysis, Shanghai 200444, Peoples R China; [Xu, Kaidi; Yu, Chengmao; Zeng, Xianqiang; Gou, Rui; Cui, Lei; Li, Chunju] Shanghai Univ, Dept Chem, Shanghai 200444, Peoples R China in 2020, Cited 78. Name: 4,4′-Dibromobiphenyl. The Name is 4,4′-Dibromobiphenyl. Through research, I have a further understanding and discovery of 92-86-4
Reported here is a molecule-Lego synthetic strategy for macrocycles with functional skeletons, involving one-pot and high-yielding condensation between bis(2,4-dimethoxyphenyl)arene monomers and paraformaldehyde. By changing the blocks, variously functional units (naphthalene, pyrene, anthraquinone, porphyrin, etc.) can be conveniently introduced into the backbone of macrocycles. Interestingly, the macrocyclization can be tuned by the geometrical configuration of monomeric blocks. Linear (180 degrees) monomer yield cyclic trimers and pentamers, while V-shaped (120 degrees, 90 degrees and 60 degrees) monomers tend to form dimers. More significantly, even heterogeneous macrocycles are obtained in moderate yield by co-oligomerization of different monomers. This series of macrocycles have the potential to be prosperous in the near future.
Bye, fridends, I hope you can learn more about C12H8Br2, If you have any questions, you can browse other blog as well. See you lster.. Name: 4,4′-Dibromobiphenyl
Reference:
Benzoxazole – Wikipedia,
,Benzoxazole | C7H5NO – PubChem