An article Bridge-Length-Dependent Intramolecular Charge Transfer in Bis(dianisylamino)-Terminated Oligo(p-phenylene)s WOS:000492082000001 published article about HEXA-PERI-HEXABENZOCORONENES; MIXED-VALENCE SYSTEMS; ELECTRON-TRANSFER; LOCALIZED/DELOCALIZED CHARACTER; CONJUGATED OLIGOMERS; RADICAL ANIONS.; ENERGY-TRANSFER; MODEL COMPOUNDS; TRANSPORT; ESR in [Uebe, Masashi; Kaneda, Kensuke; Fukuzaki, Shinya; Ito, Akihiro] Kyoto Univ, Grad Sch Engn, Dept Mol Engn, Nishikyo Ku, Kyoto 6158510, Japan; [Uebe, Masashi] RIKEN, Condensed Mol Mat Lab, Cluster Pioneering Res, Wako, Saitama 3510198, Japan in 2019, Cited 53. The Name is 4,4′-Dibromobiphenyl. Through research, I have a further understanding and discovery of 92-86-4. HPLC of Formula: C12H8Br2
Radical cations of bis(dianisylamino)-terminated oligo(p-phenylene)s (OPPs) with up to five phenyl moieties were characterized by means of UV/Vis-NIR and variable-temperature ESR spectroscopy to investigate the bridge-length-dependence on intramolecular charge/spin self-exchange between two nitrogen redox-active centers. Additionally, a comparative study between bis(dianisylamine)-based mixed-valence (MV) radical cations connected by p-terphenylene and hexa-peri-hexabenzocoronene (HBC) pi-bridging units also provided information on the influence of extended pi-conjugation over the OPP-bridge due to the planarization between adjacent phenylene units on the strength of electronic coupling. The present study on a homologous series of organic MV systems clarifies the attenuation factor through the OPP-bridge and the linear relationship between the electrochemical potential splitting and the electronic coupling in the region of intermediate-to-weak electronic coupling regime.
Welcome to talk about 92-86-4, If you have any questions, you can contact Uebe, M; Kaneda, K; Fukuzaki, S; Ito, A or send Email.. HPLC of Formula: C12H8Br2
Reference:
Benzoxazole – Wikipedia,
,Benzoxazole | C7H5NO – PubChem