Chemistry Milestones Of 33941-15-0

I hope my short article helps more people learn about this compound(1,4,7,10,13-Pentaoxa-16-azacyclooctadecane)Reference of 1,4,7,10,13-Pentaoxa-16-azacyclooctadecane. Apart from the compound(33941-15-0), you can read my other articles to know other related compounds.

Reference of 1,4,7,10,13-Pentaoxa-16-azacyclooctadecane. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 1,4,7,10,13-Pentaoxa-16-azacyclooctadecane, is researched, Molecular C12H25NO5, CAS is 33941-15-0, about Covalently decorated crown ethers on magnetic graphene oxides as bi-functional adsorbents with tailorable ion recognition properties for selective metal ion capture in water. Author is Nisola, Grace M.; Parohinog, Khino J.; Cho, Min Kyung; Burnea, Francis Kirby B.; Lee, Jin Yong; Seo, Jeong Gil; Lee, Seong-Poong; Chung, Wook-Jin.

Metal ions (Mn+) in water are considered as environmental pollutants, as industrial impurities or as potential secondary sources for valuable metals. Increasing generation of complex feed streams has raised the need for more specialized adsorbents that could preferentially capture the target Mn+. While graphene oxide (GO) is an effective adsorbent, its indiscriminate sequestration neg. affects its selectivity. To meet the growing demand for more Mn+-selective materials, GO adsorbents with dual features of ion recognition and magnetic responsiveness were developed. The bi-functional GOs were fabricated by in-situ nucleation of Fe3O4 nanoclusters on GO oxygenous groups and by direct grafting of ethynylbenzene linkers on its backbone, which served as tethering sites for the macrocyclic crown ether (CEs) ligands with tunable Mn+ affinities (i.e. CE@Fe3O4-rGO). As proof-of-concept, 12CE4@Fe3O4-rGO was proven highly selective for Li+ capture, achieving α = 367-14,513 against Na+, K+, Mg2+, Ca2+ in seawater. Its Langmuir-type Li+ adsorption achieved nearly ∼100% 12CE4 utilization (1.03 mmol g-1 CE loading). Its pseudo-second uptake rate demonstrated its rapid Li+ capture. 12CE4@Fe3O4-rGO is water-dispersible, magnetically retrievable, and recyclable with consistent Li+ uptake performance. By replacing the CEs with aza15CE5, aza18CE6 and dibenzo-24CE8, three more types of CE@Fe3O4-rGOs (1.24-1.71 mmol CE g-1) were successfully synthesized with varying affinities towards heavy metals, radionuclides and alkali metal ions. These findings highlight the versatility of the proposed technique in producing a wide selection of CE@Fe3O4-rGOs which can be used for selective Mn+ capture in various application for water decontamination, salts removal, and resource recovery.

I hope my short article helps more people learn about this compound(1,4,7,10,13-Pentaoxa-16-azacyclooctadecane)Reference of 1,4,7,10,13-Pentaoxa-16-azacyclooctadecane. Apart from the compound(33941-15-0), you can read my other articles to know other related compounds.

Reference:
Benzoxazole – Wikipedia,
Benzoxazole | C7H5NO – PubChem